La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
I. Perichaud , S. Martinuzzi
J. Phys. III France, 2 3 (1992) 313-324
Citations de cet article :
14 articles
Solar Energy
Santo Martinuzzi, Abdelillah Slaoui, Jean-Paul Kleider, et al. Solar Energy 226 (2013) https://doi.org/10.1007/978-1-4614-5806-7_461
Encyclopedia of Sustainability Science and Technology
Santo Martinuzzi, Abdelillah Slaoui, Jean-Paul Kleider, et al. Encyclopedia of Sustainability Science and Technology 9196 (2012) https://doi.org/10.1007/978-1-4419-0851-3_461
Multicrystalline silicon material: Effects of classical and rapid thermal processes
J. C. Muller and S. Martinuzzi Journal of Materials Research 13 (10) 2721 (2011) https://doi.org/10.1557/JMR.1998.0374
Minority carrier bulk lifetimes through a large multicrystalline silicon ingot and related solar cell properties
S. Martinuzzi, M. Gauthier, D. Barakel, et al. The European Physical Journal Applied Physics 40 (1) 83 (2007) https://doi.org/10.1051/epjap:2007130
Nanometer-scale metal precipitates in multicrystalline silicon solar cells
Scott A. McHugo, A. C. Thompson, A. Mohammed, et al. Journal of Applied Physics 89 (8) 4282 (2001) https://doi.org/10.1063/1.1330552
Mechanisms of transition-metal gettering in silicon
S. M. Myers, M. Seibt and W. Schröter Journal of Applied Physics 88 (7) 3795 (2000) https://doi.org/10.1063/1.1289273
Passivation of the grain boundary electrical activity in multicrystalline silicon: aluminum treatment efficiency
N. M'Gafad, H. Amzil, D. Sayah, D. Ballutaud and M. Barbé Solid-State Electronics 43 (5) 857 (1999) https://doi.org/10.1016/S0038-1101(99)00011-8
External gettering by aluminum–silicon alloying observed from carrier recombination at dislocations in float zone silicon wafers
S. Martinuzzi, I. Perichaud and J. J. Simon Applied Physics Letters 70 (20) 2744 (1997) https://doi.org/10.1063/1.119009
External self-gettering of nickel in float zone silicon wafers
N. Gay and S. Martinuzzi Applied Physics Letters 70 (19) 2568 (1997) https://doi.org/10.1063/1.118921
Impurity Removing at Dislocations in Float Zone Silicon by Aluminium-Silicon Alloying
I. Perichaud and S. Martinuzzi MRS Proceedings 469 493 (1997) https://doi.org/10.1557/PROC-469-493
LBIC investigation of impurity-dislocation interaction in FZ silicon wafers
I. Périchaud, J.J. Simon and S. Martinuzzi Materials Science and Engineering: B 42 (1-3) 265 (1996) https://doi.org/10.1016/S0921-5107(96)01719-9
Influence of phosphorus diffusion on the recombination strength of dislocations in float zone silicon wafers
J. J. Simon, I. Périchaud, N. Burle, M. Pasquinelli and S. Martinuzzi Journal of Applied Physics 80 (9) 4921 (1996) https://doi.org/10.1063/1.363535
Influence of extended defects and native impurities on external gettering in polycrystalline silicon
E. Ehret, V. Allais, J.-P. Vallard and A. Laugier Materials Science and Engineering: B 34 (2-3) 210 (1995) https://doi.org/10.1016/0921-5107(95)01275-3
High phosphorus gettering efficiency in polycrystalline silicon by optimisation of classical thermal annealing conditions
M. Loghmarti, K. Mahfoud, J. Kopp, J. C. Muller and D. Sayah Physica Status Solidi (a) 151 (2) 379 (1995) https://doi.org/10.1002/pssa.2211510215