Numéro
J. Phys. III France
Volume 3, Numéro 7, July 1993
Page(s) 1531 - 1549
DOI https://doi.org/10.1051/jp3:1993218
DOI: 10.1051/jp3:1993218
J. Phys. III France 3 (1993) 1531-1549

Diffusion thermique et de porteurs de courant au voisinage d'un joint de grain

F. Lepoutre

ONERA DES/SB B.P. 72, 92322 Châtillon Cedex, France C.N.R.S. UPR 5, Laboratoire d'Optique Physique de l'ESPCI, 10 rue Vauquelin, 75005 Paris 5, France

(Reçu le 12 octobre 1992, révisé le 2 mars 1993, accepté le 14 avril 1993)

Abstract
The photothermal methods (indirect detection of the temperature increase of a sample after absorption of a pulsed or modulated light beam) allow to measure the thermal and electronic diffusions that follow the optical absorption. We report the main applications of a photothermal microscope that we have built to provide informations about these diffusion phenomena at a micronic scale. Comparisons between the photothermal observations and microanalysis data associated with electronic microscopy have been achieved to get qualitative informations. In the case of a purely thermal diffusion this apparatus is able to detect the resistances which may appear at grain boundaries or inside the grains themselves. We present some interesting experimental features which seem to be closely related to the physical origins of these resistances (crystal orientation, dislocation, segregation, secondary phases, cracks). Using a theoretical model developed by other authors we also report quantitative values of the detected thermal resistances that we relate to macroscopic thermal diffusivities measurements of the inspected materials. When electronic carriers are photogenerated by the light excitation, the photothermal microscope can be used to follow the diffusion and the recombination of these carriers. A competition between plasma and heat diffusions is then observed. Such a competition is illustrated in the case of silicon bicristals containing metallic impurities.

Résumé
Les méthodes phototherrniques (détection indirecte de l'accroissement de température d'un échantillon après absorption d'un flux lumineux modulé ou pulsé de lumière) permettent d'étudier les diffusions thermique et électronique qui suivent l'absorption optique. Nous présentons dans cet article les principales applications d'un microscope photothermique que nous avons construit pour suivre les phénomènes de diffusion à l'échelle du micromètre. Des comparaisons entre les observations photothermiques et des résultats de microanalyse permettent d'obtenir des informations qualitatives. Dans les cas où les phénomènes observés sont purement thermiques, cet appareil permet de détecter les résistances thermiques qui apparaissent aux joints de grain ou à l'intérieur des grains eux-mêmes. Nous présentons des résultats expérimentaux qui semblent reliés à l'origine physique de ces résistances thermiques de contact (orientation cristalline, ségrégation, phase secondaire, dislocation, fissuration). En utilisant un modèle théorique développé par d'autres auteurs, nous rapportons également des valeurs quantitatives de résistances thermiques qui ont pu être reliées à des mesures macroscopiques de la diffusivité thermique des matériaux inspectés. Lorsque l'excitation lumineuse génère des porteurs électroniques, le microscope photothermique peut être utilisé pour suivre la diffusion et la recombinaison de ces porteurs. La compétition entre les diffusions électronique et thermique est alors observée. Une illustration de ces phénomènes est donnée dans le cas des bicristaux de silicium contenant des impuretés métalliques.



© Les Editions de Physique 1993